11 research outputs found

    Developing Advanced Shape Sensing Methodologies for Aerospace Applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Delamination and skin-spar debond detection in composite structures using the inverse Finite Element Method

    Get PDF
    This work presents a novel strategy for detecting and localizing intra- or inter-laminar damages in composite structures using surface-instrumented strain sensors. It is based on the real-time reconstruction of structural displacements using the inverse Finite Element Method (iFEM). The iFEM reconstructed displacements or strains are post-processed or 'smoothed' to establish a real-time healthy structural baseline. As damage diagnosis is based on comparing damaged and healthy data obtained using the iFEM, no prior data or information regarding the healthy state of the structure is required. The approach is applied numerically on two carbon fiber-reinforced epoxy composite structures: for delamination detection in a thin plate, and skin-spar debond detection in a wing box. The influence of measurement noise and sensor locations on damage detection is also investigated. The results demonstrate that the proposed approach is reliable and robust but requires strain sensors proximal to the damage site to ensure accurate predictions

    Shape sensing of plate structures using the inverse Finite Element Method: investigation of efficient strain-sensor patterns

    Get PDF
    Methods for real-time reconstruction of structural displacements using measured strain data is an area of active research due to its potential application for Structural Health Monitoring (SHM) and morphing structure control. The inverse Finite Element Method (iFEM) has been shown to be well suited for the full-field reconstruction of displacements, strains, and stresses of structures instrumented with discrete or continuous strain sensors. In practical applications, where the available number of sensors may be limited, the number and sensor positions constitute the key parameters. Understanding changes in the reconstruction quality with respect to sensor position is generally difficult and is the aim of the present work. This paper attempts to supplement the current iFEM modeling knowledge through a rigorous evaluation of several strain-sensor patterns for shape sensing of a rectangular plate. Line plots along various sections of the plate are used to assess the reconstruction quality near and far away from strain sensors, and the nodal displacements are studied as the sensor density increases. The numerical results clearly demonstrate the effectiveness of the strain sensors distributed along the plate boundary for reconstructing relatively simple displacement patterns, and highlight the potential of cross-diagonal strain-sensor patterns to improve the displacement reconstruction of more complex deformation patterns

    An Unmanned Lighter-Than-Air Platform for Large Scale Land Monitoring

    Get PDF
    The concept and preliminary design of an unmanned lighter-than-air (LTA) platform instrumented with different remote sensing technologies is presented. The aim is to assess the feasibility of using a remotely controlled airship for the land monitoring of medium sized (up to 107 m2) urban or rural areas at relatively low altitudes (below 1000 m) and its potential convenience with respect to other standard remote and in-situ sensing systems. The proposal includes equipment for high-definition visual, thermal, and hyperspectral imaging as well as LiDAR scanning. The data collected from these different sources can be then combined to obtain geo-referenced products such as land use land cover (LULC), soil water content (SWC), land surface temperature (LSC), and leaf area index (LAI) maps, among others. The potential uses for diffuse structural health monitoring over built-up areas are discussed as well. Several mission typologies are considere

    Shape Sensing of Plate and Shell Structures Undergoing Large Displacements Using the Inverse Finite Element Method

    Get PDF
    The inverse Finite Element Method (iFEM) is applied to reconstruct the displacement field of a shell structure which undergoes large deformations using discreet strain measurements as the prescribed data. The iFEM computations are carried out using an incremental procedure where at each load step, the incremental strains are used to evaluate the incremental displacements which in turn update the geometry of the deformed structure. The efficacy of the proposed approach to predict large displacements is examined using two case studies involving a cantilevered wing-shaped plate and a clamped plate. The incremental iFEM procedure is demonstrated to be sufficiently accurate in terms of reproducing the correct nonlinear character of the load-displacement curve even when a reduced number of strain sensors is used. Therefore, this approach may have important implications for real-time monitoring of aerospace structures that undergo large displacements

    DESIGN OF A PROTOTYPE UNMANNED LIGHTER-THAN-AIR PLATFORM FOR REMOTE SENSING: CONTROL, ALIMENTATION, AND PROPULSION SYSTEMS

    Get PDF
    This work presents several aspects related to the design of a new concept for a Remotely Piloted Aircraft System (RPAS), specifically, a Lighter-Than-Air (LTA) platform for the remote sensing of medium-sized rural and urban areas. The airship’s payload is intended to carry an array of sensors ranging from high-definition video cameras to hyperspectral sensors, a thermographic camera, and a LiDAR system, which all require power alimentation during low-speed surveying for fine mapping. Here, a fuel cell design solution, combined with supercapacitors, is proposed. The system is designed to provide energy for both the onboard sensors and the propulsion and thrust vector control system. In this regard, the design and optimization of the propeller blades, using Blade Element Momentum Theory (BEMT), is discussed as well, in a multidisciplinary optimisation fashion. A twin paper describes the other structural aspects of the airship design

    DESIGN OF A PROTOTYPE UNMANNED LIGHTER-THAN-AIR PLATFORM FOR REMOTE SENSING: STRUCTURAL DESIGN AND OPTIMIZATION

    Get PDF
    This work presents the structural design of a new Remotely Piloted Aircraft System (RPAS) concept for land survey applications. The RPAS Lighter-Than-Air (LTA) platform is equipped with a thrust vectoring control system made of six propellers attached to a single-rib exoskeletal load-bearing structure. The load-bearing structure is optimized to minimize structural mass, maximize payload capability, and meet the airship's operational requirements. A finite element model of the load-bearing structure was developed and analyzed under normal operating conditions of the airship, such as mid-air hovering and parking. Additionally, various failure cases, such as crash landing and control system failure, leading to haphazard operation of the propellers, were considered to simulate extreme load conditions on the airship exoskeletal structure. Airship slenderness was also considered an important design parameter and was optimized to maximize aerodynamic performance. A twin paper describes the other non-structural aspects of the airship design

    Shape Sensing of Plate Structures Using the Inverse Finite Element Method: Investigation of Efficient Strain–Sensor Patterns

    No full text
    Methods for real-time reconstruction of structural displacements using measured strain data is an area of active research due to its potential application for Structural Health Monitoring (SHM) and morphing structure control. The inverse Finite Element Method (iFEM) has been shown to be well suited for the full-field reconstruction of displacements, strains, and stresses of structures instrumented with discrete or continuous strain sensors. In practical applications, where the available number of sensors may be limited, the number and sensor positions constitute the key parameters. Understanding changes in the reconstruction quality with respect to sensor position is generally difficult and is the aim of the present work. This paper attempts to supplement the current iFEM modeling knowledge through a rigorous evaluation of several strain–sensor patterns for shape sensing of a rectangular plate. Line plots along various sections of the plate are used to assess the reconstruction quality near and far away from strain sensors, and the nodal displacements are studied as the sensor density increases. The numerical results clearly demonstrate the effectiveness of the strain sensors distributed along the plate boundary for reconstructing relatively simple displacement patterns, and highlight the potential of cross-diagonal strain–sensor patterns to improve the displacement reconstruction of more complex deformation patterns

    Hybrid Shell-Beam Inverse Finite Element Method for the Shape Sensing of Stiffened Thin-Walled Structures: Formulation and Experimental Validation on a Composite Wing-Shaped Panel

    Get PDF
    This work presents a novel methodology for the accurate and efficient elastic deformation reconstruction of thin-walled and stiffened structures from discrete strains. It builds on the inverse finite element method (iFEM), a variationally-based shape-sensing approach that reconstructs structural displacements by matching a set of analytical and experimental strains in a least-squares sense. As iFEM employs the finite element framework to discretize the structural domain and as the displacements and strains are approximated using element shape functions, the kind of element used influences the accuracy and efficiency of the iFEM analysis. This problem is addressed in the present work through a novel discretization scheme that combines beam and shell inverse elements to develop an iFEM model of the structure. Such a hybrid discretization paradigm paves the way for more accurate shape-sensing of geometrically complex structures using fewer sensor measurements and lower computational effort than traditional approaches. The hybrid iFEM is experimentally demonstrated in this work for the shape sensing of bending and torsional deformations of a composite stiffened wing panel instrumented with strain rosettes and fiber-optic sensors. The experimental results are accurate, robust, and computationally efficient, demonstrating the potential of this hybrid scheme for developing an efficient digital twin for online structural monitoring and control

    Full-Field Strain Reconstruction Using Uniaxial Strain Measurements: Application to Damage Detection

    No full text
    This work investigates the inverse problem of reconstructing the continuous displacement field of a structure using a spatially distributed set of discrete uniaxial strain data. The proposed technique is based on the inverse Finite Element Method (iFEM), which has been demonstrated to be suitable for full-field displacement, and subsequently strain, reconstruction in beam and plate structures using discrete or continuous surface strain measurements. The iFEM uses a variationally based approach to displacement reconstruction, where an error functional is discretized using a set of finite elements. The effects of position and orientation of uniaxial strain measurements on the iFEM results are investigated, and the use of certain strain smoothing strategies for improving reconstruction accuracy is discussed. Reconstruction performance using uniaxial strain data is examined numerically using the problem of a thin plate with an internal crack. The results obtained highlight that strain field reconstruction using the proposed strategy can provide useful information regarding the presence, position, and orientation of damage on the plate
    corecore